Computer Science > Machine Learning
[Submitted on 30 Sep 2021 (v1), last revised 25 Jul 2022 (this version, v3)]
Title:Prune Your Model Before Distill It
View PDFAbstract:Knowledge distillation transfers the knowledge from a cumbersome teacher to a small student. Recent results suggest that the student-friendly teacher is more appropriate to distill since it provides more transferable knowledge. In this work, we propose the novel framework, "prune, then distill," that prunes the model first to make it more transferrable and then distill it to the student. We provide several exploratory examples where the pruned teacher teaches better than the original unpruned networks. We further show theoretically that the pruned teacher plays the role of regularizer in distillation, which reduces the generalization error. Based on this result, we propose a novel neural network compression scheme where the student network is formed based on the pruned teacher and then apply the "prune, then distill" strategy. The code is available at this https URL
Submission history
From: Jinhyuk Park [view email][v1] Thu, 30 Sep 2021 09:46:20 UTC (32 KB)
[v2] Tue, 8 Mar 2022 09:04:13 UTC (252 KB)
[v3] Mon, 25 Jul 2022 05:40:34 UTC (832 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.