Computer Science > Machine Learning
[Submitted on 30 Sep 2021]
Title:A Privacy-preserving Distributed Training Framework for Cooperative Multi-agent Deep Reinforcement Learning
View PDFAbstract:Deep Reinforcement Learning (DRL) sometimes needs a large amount of data to converge in the training procedure and in some cases, each action of the agent may produce regret. This barrier naturally motivates different data sets or environment owners to cooperate to share their knowledge and train their agents more efficiently. However, it raises privacy concerns if we directly merge the raw data from different owners. To solve this problem, we proposed a new Deep Neural Network (DNN) architecture with both global NN and local NN, and a distributed training framework. We allow the global weights to be updated by all the collaborator agents while the local weights are only updated by the agent they belong to. In this way, we hope the global weighs can share the common knowledge among these collaborators while the local NN can keep the specialized properties and ensure the agent to be compatible with its specific environment. Experiments show that the framework can efficiently help agents in the same or similar environments to collaborate in their training process and gain a higher convergence rate and better performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.