Quantitative Finance > Statistical Finance
[Submitted on 29 Sep 2021]
Title:Stock Index Prediction using Cointegration test and Quantile Loss
View PDFAbstract:Recent researches on stock prediction using deep learning methods has been actively studied. This is the task to predict the movement of stock prices in the future based on historical trends. The approach to predicting the movement based solely on the pattern of the historical movement of it on charts, not on fundamental values, is called the Technical Analysis, which can be divided into univariate and multivariate methods in the regression task. According to the latter approach, it is important to select different factors well as inputs to enhance the performance of the model. Moreover, its performance can depend on which loss is used to train the model. However, most studies tend to focus on building the structures of models, not on how to select informative factors as inputs to train them. In this paper, we propose a method that can get better performance in terms of returns when selecting informative factors using the cointegration test and learning the model using quantile loss. We compare the two RNN variants with quantile loss with only five factors obtained through the cointegration test among the entire 15 stock index factors collected in the experiment. The Cumulative return and Sharpe ratio were used to evaluate the performance of trained models. Our experimental results show that our proposed method outperforms the other conventional approaches.
Current browse context:
q-fin.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.