Quantitative Finance > Statistical Finance
[Submitted on 14 Sep 2021]
Title:Stock Price Prediction Under Anomalous Circumstances
View PDFAbstract:The stock market is volatile and complicated, especially in 2020. Because of a series of global and regional "black swans," such as the COVID-19 pandemic, the U.S. stock market triggered the circuit breaker three times within one week of March 9 to 16, which is unprecedented throughout history. Affected by the whole circumstance, the stock prices of individual corporations also plummeted by rates that were never predicted by any pre-developed forecasting models. It reveals that there was a lack of satisfactory models that could predict the changes in stocks prices when catastrophic, highly unlikely events occur. To fill the void of such models and to help prevent investors from heavy losses during uncertain times, this paper aims to capture the movement pattern of stock prices under anomalous circumstances. First, we detect outliers in sequential stock prices by fitting a standard ARIMA model and identifying the points where predictions deviate significantly from actual values. With the selected data points, we train ARIMA and LSTM models at the single-stock level, industry level, and general market level, respectively. Since the public moods affect the stock market tremendously, a sentiment analysis is also incorporated into the models in the form of sentiment scores, which are converted from comments about specific stocks on Reddit. Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98% which can be used to optimize existing prediction methodologies.
Current browse context:
q-fin.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.