Computer Science > Machine Learning
[Submitted on 30 Sep 2021]
Title:Deep Embedded K-Means Clustering
View PDFAbstract:Recently, deep clustering methods have gained momentum because of the high representational power of deep neural networks (DNNs) such as autoencoder. The key idea is that representation learning and clustering can reinforce each other: Good representations lead to good clustering while good clustering provides good supervisory signals to representation learning. Critical questions include: 1) How to optimize representation learning and clustering? 2) Should the reconstruction loss of autoencoder be considered always? In this paper, we propose DEKM (for Deep Embedded K-Means) to answer these two questions. Since the embedding space generated by autoencoder may have no obvious cluster structures, we propose to further transform the embedding space to a new space that reveals the cluster-structure information. This is achieved by an orthonormal transformation matrix, which contains the eigenvectors of the within-class scatter matrix of K-means. The eigenvalues indicate the importance of the eigenvectors' contributions to the cluster-structure information in the new space. Our goal is to increase the cluster-structure information. To this end, we discard the decoder and propose a greedy method to optimize the representation. Representation learning and clustering are alternately optimized by DEKM. Experimental results on the real-world datasets demonstrate that DEKM achieves state-of-the-art performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.