Computer Science > Cryptography and Security
[Submitted on 30 Sep 2021]
Title:Mitigating Black-Box Adversarial Attacks via Output Noise Perturbation
View PDFAbstract:In black-box adversarial attacks, adversaries query the deep neural network (DNN), use the output to reconstruct gradients, and then optimize the adversarial inputs iteratively. In this paper, we study the method of adding white noise to the DNN output to mitigate such attacks, with a unique focus on the trade-off analysis of noise level and query cost. The attacker's query count (QC) is derived mathematically as a function of noise standard deviation. With this result, the defender can conveniently find the noise level needed to mitigate attacks for the desired security level specified by QC and limited DNN performance loss. Our analysis shows that the added noise is drastically magnified by the small variation of DNN outputs, which makes the reconstructed gradient have an extremely low signal-to-noise ratio (SNR). Adding slight white noise with a standard deviation less than 0.01 is enough to increase QC by many orders of magnitude without introducing any noticeable classification accuracy reduction. Our experiments demonstrate that this method can effectively mitigate both soft-label and hard-label black-box attacks under realistic QC constraints. We also show that this method outperforms many other defense methods and is robust to the attacker's countermeasures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.