High Energy Physics - Theory
[Submitted on 30 Oct 2021 (v1), last revised 21 Feb 2022 (this version, v2)]
Title:Quantum Fisher information as a probe for Unruh thermality
View PDFAbstract:A long-standing debate on Unruh effect is about its obscure thermal nature. In this Letter, we use quantum Fisher information (QFI) as an effective probe to explore the thermal nature of Unruh effect from both local and global perspectives. By resolving the full dynamics of UDW detector, we find that the QFI is a time-evolving function of detector's energy gap, Unruh temperature $T_U$ and particularities of background field, e.g., mass and spacetime dimensionality. We show that the asymptotic QFI whence detector arrives its equilibrium is solely determined by $T_U$, demonstrating the global side of Unruh thermality alluded by the KMS condition. We also show that the local side of Unruh effect, i.e., the different ways for the detector to approach the same thermal equilibrium, is encoded in the corresponding time-evolution of the QFI. In particular, we find that with massless scalar background the QFI has unique monotonicity in $n=3$ dimensional spacetime, and becomes non-monotonous for $n\neq3$ models where a local peak value exists at early time and for finite acceleration, indicating an enhanced precision of estimation on Unruh temperature at a relative low acceleration can be achieved. Once the field acquiring mass, the related QFI becomes significantly robust against the Unruh decoherence in the sense that its local peak sustains for a very long time. While coupling to a more massive background, the persistence can even be strengthened and the QFI possesses a larger maximal value. Such robustness of QFI can surely facilitate any practical quantum estimation task.
Submission history
From: Jun Feng [view email][v1] Sat, 30 Oct 2021 16:06:22 UTC (6,038 KB)
[v2] Mon, 21 Feb 2022 16:13:55 UTC (3,884 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.