Quantum Physics
[Submitted on 1 Nov 2021 (v1), last revised 18 Apr 2022 (this version, v2)]
Title:Constructing an entangled Unruh Otto engine and its efficiency
View PDFAbstract:Uniformly accelerated frame mimics a thermal bath whose temperature is proportional to the proper acceleration. Using this phenomenon we give a detailed construction of an Otto cycle between two energy eigenstates of a system, consists of two entangled qubits. In the isochoric stages the thermal bath is being provided via the vacuum fluctuations of the background field for a monopole interaction by accelerating them. We find that making of Otto cycle is possible when one qubit is accelerating in the right Rindler wedge and other one is moving in the left Rindler wedge; i.e. in anti-parallel motion, with the initial composite state is a non-maximally entangled one. However, the efficiency greater than that of the usual single qubit quantum Otto engine is not possible. We provide values of the available parameters which make Otto cycle possible. On the other hand, Otto cycle is not possible if one considers the non-maximally entangled state for parallel motion. Moreover, for both initial symmetric and anti-symmetric Bell states we do not find any possibility of the cycle for qubits' parallel and anti-parallel motion.
Submission history
From: Bibhas Majhi Ranjan [view email][v1] Mon, 1 Nov 2021 05:39:00 UTC (3,271 KB)
[v2] Mon, 18 Apr 2022 05:04:24 UTC (4,057 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.