Condensed Matter > Statistical Mechanics
[Submitted on 1 Nov 2021 (v1), last revised 28 Dec 2021 (this version, v2)]
Title:Finite size spectrum of the staggered six-vertex model with $U_q(\mathfrak{sl}(2))$-invariant boundary conditions
View PDFAbstract:The finite size spectrum of the critical $\mathbb{Z}_2$-staggered spin-$1/2$ XXZ model with quantum group invariant boundary conditions is studied. For a particular (self-dual) choice of the staggering the spectrum of conformal weights of this model has been recently been shown to have a continuous component, similar as in the model with periodic boundary conditions whose continuum limit has been found to be described in terms of the non-compact $SU(2,\mathbb{R})/U(1)$ Euclidean black hole conformal field theory (CFT). Here we show that the same is true for a range of the staggering parameter. In addition we find that levels from the discrete part of the spectrum of this CFT emerge as the anisotropy is varied. The finite size amplitudes of both the continuous and the discrete levels are related to the corresponding eigenvalues of a quasi-momentum operator which commutes with the Hamiltonian and the transfer matrix of the model.
Submission history
From: Holger Frahm [view email][v1] Mon, 1 Nov 2021 11:34:51 UTC (423 KB)
[v2] Tue, 28 Dec 2021 21:30:53 UTC (424 KB)
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.