High Energy Physics - Theory
[Submitted on 1 Nov 2021 (v1), last revised 4 May 2022 (this version, v3)]
Title:Non-Invertible Duality Defects in 3+1 Dimensions
View PDFAbstract:For any quantum system invariant under gauging a higher-form global symmetry, we construct a non-invertible topological defect by gauging in only half of spacetime. This generalizes the Kramers-Wannier duality line in 1+1 dimensions to higher spacetime dimensions. We focus on the case of a one-form symmetry in 3+1 dimensions, and determine the fusion rule. From a direct analysis of one-form symmetry protected topological phases, we show that the existence of certain kinds of duality defects is intrinsically incompatible with a trivially gapped phase. We give an explicit realization of this duality defect in the free Maxwell theory, both in the continuum and in a modified Villain lattice model. The duality defect is realized by a Chern-Simons coupling between the gauge fields from the two sides. We further construct the duality defect in non-abelian gauge theories and the $\mathbb{Z}_N$ lattice gauge theory.
Submission history
From: Shu-Heng Shao [view email][v1] Mon, 1 Nov 2021 18:00:00 UTC (319 KB)
[v2] Fri, 19 Nov 2021 17:51:44 UTC (306 KB)
[v3] Wed, 4 May 2022 18:41:17 UTC (299 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.