High Energy Physics - Theory
[Submitted on 2 Nov 2021 (v1), last revised 3 Nov 2021 (this version, v2)]
Title:The Diagrammatic Coaction and Cuts of the Double Box
View PDFAbstract:The diagrammatic coaction encodes the analytic structure of Feynman integrals by mapping any given Feynman diagram into a tensor product of diagrams defined by contractions and cuts of the original diagram. Feynman integrals evaluate to generalized hypergeometric functions in dimensional regularization. Establishing the coaction on this type of functions has helped formulating and checking the diagrammatic coaction of certain two-loop integrals. In this talk we study its application on the fully massless double box diagram. We make use of differential equation techniques, which, together with the properties of homology and cohomology theory of the resulting hypergeometric functions, allow us to formulate the coaction on a range of cuts of the double box in closed form.
Submission history
From: Aris Ioannou [view email][v1] Tue, 2 Nov 2021 10:57:06 UTC (651 KB)
[v2] Wed, 3 Nov 2021 14:01:16 UTC (652 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.