High Energy Physics - Lattice
[Submitted on 2 Nov 2021]
Title:The transversity parton distribution function of the nucleon using the pseudo-distribution approach
View PDFAbstract:We present a determination of the non-singlet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at $\mu^2=2$ GeV$^2$ from lattice quantum chromodynamics. We apply the pseudo-distribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudo-distribution using the leading-twist next-to-leading order (NLO) matching coefficients calculated for transversity. We reconstruct the $x$-dependence of the transversity PDF through an expansion in a basis of Jacobi polynomials in order to reduce the PDF ansatz dependence. Within the limitations imposed by a heavier-than-physical pion mass and a fixed lattice spacing, we present a comparison of our estimate for the valence transversity PDF with the recent global fit results based on single transverse spin asymmetry. We find the intrinsic nucleon sea to be isospin symmetric with respect to transversity.
Current browse context:
hep-lat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.