Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 3 Nov 2021 (v1), last revised 19 Jan 2022 (this version, v2)]
Title:Primordial Helical Magnetic Fields from Inflation?
View PDFAbstract:We revisit the mechanism of helical magnetogenesis during inflation with a parity violating interaction using the formalism of stochastic inflation. One of the polarization of the gauge field undergoes tachyonic growth leading to the generation of helical magnetic fields. We obtain the Langevin equations associated with the electromagnetic fields which are in the form of Ornstein-Uhlenbeck stochastic differential equations. Consequently, the tachyonic growth of the helical magnetic fields is balanced by a mean-reverting process of stochastic dynamics such that the magnetic fields settle down to an equilibrium state with the amplitude smaller than what is obtained in the absence of the stochastic noises. Working in the parameter space of the model where both the backreaction and the strong coupling problems are under control the model does not provide large enough seed to be amplified by the galactic dynamo as the source of the magnetic fields observed on cosmological scales.
Submission history
From: Amin Nassiri Rad [view email][v1] Wed, 3 Nov 2021 11:35:16 UTC (543 KB)
[v2] Wed, 19 Jan 2022 23:26:39 UTC (241 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.