High Energy Physics - Theory
[Submitted on 3 Nov 2021]
Title:The Schur Expansion of Characteristic Polynomials and Random Matrices
View PDFAbstract:We develop a new framework to compute the exact correlators of characteristic polynomials, and their inverses, in random matrix theory. Our results hold for general potentials and incorporate the effects of an external source. In matrix model realizations of string theory, these correspond to correlation functions of exponentiated "(anti-)branes" in a given background of "momentum branes". Our method relies on expanding the (inverse) determinants in terms of Schur polynomials, then re-summing their expectation values over the allowed representations of the symmetric group. Beyond unifying previous, seemingly disparate calculations, this powerful technique immediately delivers two new results: 1) the full finite $N$ answer for the correlator of inverse determinant insertions in the presence of a matrix source, and 2) access to an interesting, novel regime $M>N$, where the number of inverse determinant insertions $M$ exceeds the size of the matrix $N$.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.