High Energy Physics - Theory
[Submitted on 3 Nov 2021 (v1), last revised 24 Jan 2023 (this version, v3)]
Title:Mirror Symmetry for Five-Parameter Hulek-Verrill Manifolds
View PDFAbstract:We study the mirrors of five-parameter Calabi-Yau threefolds first studied by Hulek and Verrill in the context of observed modular behaviour of the zeta functions for Calabi-Yau manifolds. Toric geometry allows for a simple explicit construction of these mirrors, which turn out to be familiar manifolds. These are elliptically fibred in multiple ways. By studying the singular fibres, we are able to identify the rational curves of low degree on the mirror manifolds. This verifies the mirror symmetry prediction obtained by studying the mirror map near large complex structure points. We undertake also an extensive study of the periods of the Hulek-Verrill manifolds and their monodromies. On the mirror, we compute the genus-zero and -one instanton numbers, which are labelled by 5 indices, as $h^{1,1}=5$. There is an obvious permutation symmetry on these indices, but in addition there is a surprising repetition of values. We trace this back to an $S_{6}$ symmetry made manifest by certain constructions of the complex structure moduli space of the Hulek-Verrill manifold. Among other consequences, we see in this way that the moduli space has six large complex structure limits. It is the freedom to expand the prepotential about any one of these points that leads to this symmetry in the instanton numbers. An intriguing fact is that the group that acts on the instanton numbers is larger than $S_6$ and is in fact an infinite hyperbolic Coxeter group, that we study. The group orbits have a 'web' structure, and with certain qualifications the instanton numbers are only nonzero if they belong to what we term 'positive webs'. This structure has consequences for instanton numbers at all genera.
Submission history
From: Pyry Kuusela [view email][v1] Wed, 3 Nov 2021 18:01:22 UTC (1,454 KB)
[v2] Fri, 14 Oct 2022 10:51:32 UTC (4,367 KB)
[v3] Tue, 24 Jan 2023 15:49:25 UTC (4,388 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.