High Energy Physics - Theory
[Submitted on 4 Nov 2021 (v1), last revised 28 Apr 2022 (this version, v2)]
Title:The momentum amplituhedron of SYM and ABJM from twistor-string maps
View PDFAbstract:We study remarkable connections between twistor-string formulas for tree amplitudes in ${\cal N}=4$ SYM and ${\cal N}=6$ ABJM, and the corresponding momentum amplituhedron in the kinematic space of $D=4$ and $D=3$, respectively. Based on the Veronese map to positive Grassmannians, we define a twistor-string map from $G_{+}(2,n)$ to a $(2n{-}4)$-dimensional subspace of the 4d kinematic space where the momentum amplituhedron of SYM lives. We provide strong evidence that the twistor-string map is a diffeomorphism from $G_+(2,n)$ to the interior of momentum amplituhedron; the canonical form of the latter, which is known to give tree amplitudes of SYM, can be obtained as pushforward of that of former. We then move to three dimensions: based on Veronese map to orthogonal positive Grassmannian, we propose a similar twistor-string map from the moduli space ${\cal M}_{0,n}^+$ to a $(n{-}3)$-dimensional subspace of 3d kinematic space. The image gives a new positive geometry which conjecturally serves as the momentum amplituhedron for ABJM; its canonical form gives the tree amplitude with reduced supersymmetries in the theory. We also show how boundaries of compactified ${\cal M}_{0,n}^+$ map to boundaries of momentum amplituhedra for SYM and ABJM corresponding to factorization channels of amplitudes, and in particular for ABJM case the map beautifully excludes all unwanted channels.
Submission history
From: Chia-Kai Kuo [view email][v1] Thu, 4 Nov 2021 01:21:07 UTC (732 KB)
[v2] Thu, 28 Apr 2022 10:38:36 UTC (837 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.