Mathematics > Operator Algebras
[Submitted on 3 Nov 2021]
Title:Tolerance relations and operator systems
View PDFAbstract:We extend the scope of noncommutative geometry by generalizing the construction of the noncommutative algebra of a quotient space to situations in which one is no longer dealing with an equivalence relation. For these so-called tolerance relations, passing to the associated equivalence relation looses crucial information as is clear from the examples such as coarse graining in physics or the relation $d(x,y)< \varepsilon$ on a metric space. Fortunately, thanks to the formalism of operator systems such an extension is possible and provides new invariants, such as the $C^*$-envelope and the propagation number.
After a thorough investigation of the structure of the (non-unital) operator systems associated to tolerance relations, we analyze the corresponding state spaces. In particular, we determine the pure state space associated to the operator system for the relation $d(x,y)< \varepsilon$ on a path metric measure space.
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.