Mathematics > Category Theory
[Submitted on 4 Nov 2021 (v1), last revised 21 Nov 2021 (this version, v2)]
Title:Pregeometric Spaces from Wolfram Model Rewriting Systems as Homotopy Types
View PDFAbstract:How do spaces emerge from pregeometric discrete building blocks governed by computational rules? To address this, we investigate non-deterministic rewriting systems (multiway systems) of the Wolfram model. We express these rewriting systems as homotopy types. Using this new formulation, we outline how spatial structures can be functorially inherited from pregeometric type-theoretic constructions. We show how higher homotopy types are constructed from rewriting rules. These correspond to morphisms of an $n$-fold category. Subsequently, the $n \to \infty$ limit of the Wolfram model rulial multiway system is identified as an $\infty$-groupoid, with the latter being relevant given Grothendieck's homotopy hypothesis. We then go on to show how this construction extends to the classifying space of rulial multiway systems, which forms a multiverse of multiway systems and carries the formal structure of an ${\left(\infty, 1\right)}$-topos. This correspondence to higher categorical structures offers a new way to understand how spaces relevant to physics may arise from pregeometric combinatorial models. A key issue we have addressed here is to relate abstract non-deterministic rewriting systems to higher homotopy spaces. A consequence of constructing spaces and geometry synthetically is that it eliminates ad hoc assumptions about geometric attributes of a model such as an a priori background or pre-assigned geometric data. Instead, geometry is inherited functorially by higher structures. This is relevant for formally justifying different choices of underlying spacetime discretization adopted by models of quantum gravity. We conclude with comments on how our framework of higher category-theoretic combinatorial constructions, corroborates with other approaches investigating higher categorical structures relevant to the foundations of physics.
Submission history
From: Xerxes D. Arsiwalla [view email][v1] Thu, 4 Nov 2021 16:24:34 UTC (3,826 KB)
[v2] Sun, 21 Nov 2021 18:25:06 UTC (3,826 KB)
Current browse context:
math.CT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.