High Energy Physics - Theory
[Submitted on 8 Nov 2021 (v1), last revised 22 Mar 2022 (this version, v2)]
Title:Asymptotic freedom and safety in quantum gravity
View PDFAbstract:We compute non-perturbative flow equations for the couplings of quantum gravity in fourth order of a derivative expansion. The gauge invariant functional flow equation for arbitrary metrics allows us to extract $\beta$-functions for all couplings. In our truncation we find two fixed points. One corresponds to asymptotically free higher derivative gravity, the other is an extension of the asymptotically safe fixed point in the Einstein-Hilbert truncation or extensions thereof. The infrared limit of the flow equations entails only unobservably small modifications of Einstein gravity coupled to a scalar field. Quantum gravity can be asymptotically free, based on a flow trajectory from the corresponding ultraviolet fixed point to the infrared region. This flow can also be realized by a scaling solution for varying values of a scalar field. As an alternative possibility, quantum gravity can be realized by asymptotic safety at the other fixed point. There may exist a critical trajectory between the two fixed points, starting in the extreme ultraviolet from asymptotic freedom. We compute critical exponents and determine the number of relevant parameters for the two fixed points. Evaluating the flow equation for constant scalar fields yields the universal gravitational contribution to the effective potential for the scalars.
Submission history
From: Masatoshi Yamada [view email][v1] Mon, 8 Nov 2021 18:20:12 UTC (297 KB)
[v2] Tue, 22 Mar 2022 21:42:57 UTC (297 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.