High Energy Physics - Theory
[Submitted on 9 Nov 2021 (v1), last revised 10 Jan 2022 (this version, v2)]
Title:Provable properties of asymptotic safety in $f(R)$ approximation
View PDFAbstract:We study an $f(R)$ approximation to asymptotic safety, using a family of non-adaptive cutoffs, kept general to test for universality. Matching solutions on the four-dimensional sphere and hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators. For this family of cutoffs, the scaling dimension at large $n$ of the $n^\text{th}$ eigenoperator, is $\lambda_n\propto b\, n\ln n$. The coefficient $b$ is non-universal, a consequence of the single-metric approximation. The large $R$ limit is universal on the hyperboloid, but not on the sphere where cutoff dependence results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of operators, infinitely many of which are relevant. These are $f(R)$ analogues of novel operators in the conformal sector which were used recently to furnish an alternative quantisation of gravity.
Submission history
From: Tim Morris Prof [view email][v1] Tue, 9 Nov 2021 11:54:01 UTC (39 KB)
[v2] Mon, 10 Jan 2022 14:32:53 UTC (39 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.