High Energy Physics - Theory
[Submitted on 10 Nov 2021]
Title:The double smeared null energy condition
View PDFAbstract:The null energy condition (NEC), an important assumption of the Penrose singularity theorem, is violated by quantum fields. The natural generalization of the NEC in quantum field theory, the renormalized null energy averaged over a finite null segment, is known to be unbounded from below. Here, we propose an alternative, the double smeared null energy condition (DSNEC), stating that the null energy smeared over two null directions has a finite lower bound. We rigorously derive DSNEC from general worldvolume bounds for free quantum fields in Minkowski spacetime. Our method allows for future systematic inclusion of curvature corrections. As a further application of the techniques we develop, we prove additional lower bounds on the expectation values of various operators such as conserved higher spin currents. DSNEC provides a natural starting point for proving singularity theorems in semi-classical gravity.
Submission history
From: Eleni-Alexandra Kontou [view email][v1] Wed, 10 Nov 2021 16:24:47 UTC (60 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.