High Energy Physics - Theory
[Submitted on 10 Nov 2021 (v1), last revised 20 Nov 2021 (this version, v2)]
Title:Entanglement in the Quantum Hall Matrix Model
View PDFAbstract:Characterizing the entanglement of matrix degrees of freedom is essential for understanding the holographic emergence of spacetime. The Quantum Hall Matrix Model is a gauged $U(N)$ matrix quantum mechanics with two matrices whose ground state is known exactly and describes an emergent spatial disk with incompressible bulk dynamics. We define and compute an entanglement entropy in the ground state associated to a cut through the disk. There are two contributions. A collective field describing the eigenvalues of one of the matrices gives a gauge-invariant chiral boundary mode leading to an expected logarithmic entanglement entropy. Further, the cut through the bulk splits certain 'off-diagonal' matrix elements that must be duplicated and associated to both sides of the cut. Sewing these duplicated modes together in a gauge-invariant way leads to a bulk 'area law' contribution to the entanglement entropy. All of these entropies are regularized by finite $N$.
Submission history
From: Sean Hartnoll [view email][v1] Wed, 10 Nov 2021 22:11:03 UTC (1,040 KB)
[v2] Sat, 20 Nov 2021 01:54:10 UTC (1,040 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.