Quantum Physics
[Submitted on 11 Nov 2021 (v1), last revised 8 Dec 2023 (this version, v4)]
Title:Approximate symmetries and quantum error correction
View PDF HTML (experimental)Abstract:Quantum error correction (QEC) is a key concept in quantum computation as well as many areas of physics. There are fundamental tensions between continuous symmetries and QEC. One vital situation is unfolded by the Eastin--Knill theorem, which forbids the existence of QEC codes that admit transversal continuous symmetry actions (transformations). Here, we systematically study the competition between continuous symmetries and QEC in a quantitative manner. We first define a series of meaningful measures of approximate symmetries motivated from different perspectives, and then establish a series of trade-off bounds between them and QEC accuracy utilizing multiple different methods. Remarkably, the results allow us to derive general quantitative limitations of transversally implementable logical gates, an important topic in fault-tolerant quantum computation. As concrete examples, we showcase two explicit types of quantum codes, obtained from quantum Reed--Muller codes and thermodynamic codes, respectively, that nearly saturate our bounds. Finally, we discuss several potential applications of our results in physics.
Submission history
From: Sisi Zhou [view email][v1] Thu, 11 Nov 2021 18:09:33 UTC (166 KB)
[v2] Tue, 4 Jan 2022 06:16:37 UTC (166 KB)
[v3] Tue, 12 Apr 2022 17:42:57 UTC (168 KB)
[v4] Fri, 8 Dec 2023 17:07:55 UTC (202 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.