High Energy Physics - Lattice
[Submitted on 12 Nov 2021 (v1), last revised 21 Mar 2022 (this version, v2)]
Title:Fermionic quantum field theories as probabilistic cellular automata
View PDFAbstract:A class of fermionic quantum field theories with interactions is shown to be equivalent to probabilistic cellular automata, namely cellular automata with a probability distribution for the initial states. Probabilistic cellular automata on a one-dimensional lattice are equivalent to two - dimensional quantum field theories for fermions. They can be viewed as generalized Ising models on a square lattice and therefore as classical statistical systems. As quantum field theories they are quantum systems. Thus quantum mechanics emerges from classical statistics. As an explicit example for an interacting fermionic quantum field theory we describe a type of discretized Thirring model as a cellular automaton. The updating rule of the automaton is encoded in the step evolution operator that can be expressed in terms of fermionic annihilation and creation operators. The complex structure of quantum mechanics is associated to particle -- hole transformations. The naive continuum limit exhibits Lorentz symmetry. We exploit the equivalence to quantum field theory in order to show how quantum concepts as wave functions, density matrix, non-commuting operators for observables and similarity transformations are convenient and useful concepts for the description of probabilistic cellular automata.
Submission history
From: Christof Wetterich [view email][v1] Fri, 12 Nov 2021 14:01:23 UTC (1,882 KB)
[v2] Mon, 21 Mar 2022 16:24:23 UTC (95 KB)
Current browse context:
hep-lat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.