Electrical Engineering and Systems Science > Systems and Control
[Submitted on 13 Nov 2021 (v1), last revised 3 Feb 2022 (this version, v2)]
Title:Selection of the Speed Command Distance for Improved Performance of a Rule-Based VSL and Lane Change Control
View PDFAbstract:Variable Speed Limit (VSL) control has been one of the most popular techniques with the potential of smoothing traffic flow, maximizing throughput at bottlenecks, and improving mobility and safety. Despite the substantial research efforts in the application of VSL control, few studies have looked into the effect of the VSL sign distance from the point of an accident or a bottleneck. In this paper, we show that this distance has a significant impact on the effectiveness and performance of VSL control. We propose a rule-based VSL strategy that matches the outflow of the upstream VSL zone with the bottleneck capacity based on a multi-section Cell Transmission Model (CTM). Then, we consider the distance of the upstream VSL zone as a control variable and perform a comprehensive analysis of its impact on the performance of the closed-loop traffic control system based on the multi-section CTM. We develop a lower bound that this distance needs to satisfy in order to guarantee homogeneous traffic density across sections and reduce bottleneck congestion. The bound is verified analytically and demonstrated using microscopic simulation of traffic on I-710 in Southern California. The simulations are used to quantify the benefits on mobility, safety and emissions obtained by selecting the upstream VSL zone distance to satisfy the analytical lower bound. The developed lower bound is a design tool which can be used to tune and improve the performance of VSL controllers.
Submission history
From: Tianchen Yuan [view email][v1] Sat, 13 Nov 2021 06:27:26 UTC (1,730 KB)
[v2] Thu, 3 Feb 2022 02:30:10 UTC (1,560 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.