Nuclear Theory
[Submitted on 16 Nov 2021 (v1), last revised 3 Feb 2022 (this version, v2)]
Title:Hydrodynamization times of a holographic fluid far from equilibrium
View PDFAbstract:We investigate several hydrodynamization times for an ensemble of different far-from-equilibrium solutions of the strongly coupled $\mathcal{N}=4$ Supersymmetric Yang-Mills plasma undergoing Bjorken flow. For the ensemble of initial data analyzed in the present work, we find that, with typical tolerances between $3\%$ to $5\%$, the average hydrodynamization time associated with the late time convergence of the pressure anisotropy to the corresponding Borel resummed hydrodynamic attractor is approximately equal to the average hydrodynamization time associated with the Navier-Stokes result, while both are shorter than the average hydrodynamization time associated with second-order hydrodynamics. On the other hand, we find that the entropy density of the different solutions coalesces to second-order hydrodynamics long before entering in the Navier-Stokes regime. A clear hierarchy between the different average hydrodynamization times of the Bjorken expanding fluid is established for the set of analyzed initial data, comprising also some solutions which, whilst satisfying the dominant and the weak energy conditions at the initial time, evolve such as to transiently violate one or both conditions when the fluid is still far from equilibrium. In particular, solutions violating the weak energy condition are generally found to take a longer time to enter in the hydrodynamic regime than the other solutions.
Submission history
From: Romulo Rougemont [view email][v1] Tue, 16 Nov 2021 15:01:40 UTC (971 KB)
[v2] Thu, 3 Feb 2022 14:44:28 UTC (1,088 KB)
Current browse context:
nucl-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.