High Energy Physics - Phenomenology
[Submitted on 16 Nov 2021]
Title:Gravitational Wave Gastronomy
View PDFAbstract:The symmetry breaking of grand unified gauge groups in the early Universe often leaves behind relic topological defects such as cosmic strings, domain walls, or monopoles. For some symmetry breaking chains, hybrid defects can form where cosmic strings attach to domain walls or monopoles attach to strings. In general, such hybrid defects are unstable, with one defect "eating" the other via the conversion of its rest mass into the other's kinetic energy and subsequently decaying via gravitational waves. In this work, we determine the gravitational wave spectrum from 1) the destruction of a cosmic string network by the nucleation of monopoles which cut up and "eat" the strings, 2) the collapse and decay of a monopole-string network by strings that "eat" the monopoles, 3) the destruction of a domain wall network by the nucleation of string-bounded holes on the wall that expand and "eat" the wall, and 4) the collapse and decay of a string-bounded wall network by walls that "eat" the strings. We call the gravitational wave signals produced from the "eating" of one topological defect by another gravitational wave gastronomy. We find that the four gravitational wave gastronomy signals considered yield unique spectra that can be used to narrow down the SO(10) symmetry breaking chain to the Standard Model and the scales of symmetry breaking associated with the consumed topological defects. Moreover, the systems we consider are unlikely to have a residual monopole or domain wall problem.
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.