High Energy Physics - Theory
[Submitted on 17 Nov 2021 (v1), last revised 19 Dec 2021 (this version, v2)]
Title:A Tail of Eternal Inflation
View PDFAbstract:Non-trivial inflaton self-interactions can yield calculable signatures of primordial non-Gaussianity that are measurable in cosmic surveys. Surprisingly, we find that the phase transition to slow-roll eternal inflation is often incalculable in the same models. Instead, this transition is sensitive to the non-Gaussian tail of the distribution of scalar fluctuations, which probes physics inside the horizon, potentially beyond the cutoff scale of the Effective Field Theory of Inflation. We demonstrate this fact directly by calculating non-Gaussian corrections to Stochastic Inflation within the framework of Soft de Sitter Effective Theory, from which we derive the associated probability distribution for the scalar fluctuations. We find parameter space consistent with current observations and weak coupling at horizon crossing in which the large fluctuations relevant for eternal inflation can only be determined by appealing to a UV completion. We also show this breakdown of the perturbative description is required for the de Sitter entropy to reflect the number of de Sitter microstates.
Submission history
From: Timothy Cohen [view email][v1] Wed, 17 Nov 2021 19:00:05 UTC (441 KB)
[v2] Sun, 19 Dec 2021 19:12:33 UTC (444 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.