Physics > Plasma Physics
[Submitted on 22 Nov 2021]
Title:The data-driven future of high energy density physics
View PDFAbstract:The study of plasma physics under conditions of extreme temperatures, densities and electromagnetic field strengths is significant for our understanding of astrophysics, nuclear fusion and fundamental physics. These extreme physical systems are strongly non-linear and very difficult to understand theoretically or optimize experimentally. Here, we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proven far too non-linear for human researchers. From a fundamental perspective, our understanding can be helped by the way in which machine learning models can rapidly discover complex interactions in large data sets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to ~daily), moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we advance proposals for the community in terms of research design, training, best practices, and support for synthetic diagnostics and data analysis.
Current browse context:
physics.plasm-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.