High Energy Physics - Phenomenology
[Submitted on 22 Nov 2021 (v1), last revised 23 Feb 2022 (this version, v3)]
Title:Stability of Classical Chromodynamic Fields
View PDFAbstract:A system of gluon fields generated at the earliest phase of relativistic heavy-ion collisions can be described in terms of classical fields. Numerical simulations show that the system is unstable but a character of the instability is not well understood. With the intention to systematically study the problem, we analyze a stability of classical chromomagnetic and chromoelectric fields which are constant and uniform. We consider the Abelian configurations discussed in the past where the fields are due to the single-color potentials linearly depending on coordinates. However, we mostly focus on the nonAbelian configurations where the fields are generated by the multi-color non-commuting constant uniform potentials. We derive a complete spectrum of small fluctuations around the background fields which obey the linearized Yang-Mills equations. The spectra of Abelian and nonAbelian configurations are similar but different and they both include unstable modes. We briefly discuss the relevance of our results for fields which are uniform only in a limited spatial domain.
Submission history
From: Stanislaw Mrowczynski [view email][v1] Mon, 22 Nov 2021 18:14:24 UTC (1,190 KB)
[v2] Tue, 1 Feb 2022 15:34:17 UTC (1,356 KB)
[v3] Wed, 23 Feb 2022 18:21:15 UTC (1,356 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.