Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 24 Nov 2021 (v1), last revised 4 Mar 2022 (this version, v2)]
Title:General Analytical Conditions for Inflaton Fragmentation: Quick and Easy Tests for its Occurrence
View PDFAbstract:Understanding the physics of inflaton condensate fragmentation in the early Universe is crucial as the existence of fragments in the form of non-topological solitons (oscillons or Q-balls) may potentially modify the evolution of the post-inflation Universe. Furthermore, such fragments may evolve into primordial black holes and form dark matter, or emit gravitational waves. Due to the non-perturbative and non-linear nature of the dynamics, most of the studies rely on numerical lattice simulations. Numerical simulations of condensate fragmentation are, however, challenging and, without knowing where to look in the parameter space, they are likely to be time-consuming as well. In this paper, we provide generic analytical conditions for the perturbations of an inflaton condensate to undergo growth to non-linearity in the cases of both symmetric and asymmetric inflaton potentials. We apply the conditions to various inflation models and demonstrate that our results are in good agreement with explicit numerical simulations. Our analytical conditions are easy to use and may be utilised in order to quickly identify models that may undergo fragmentation and determine the conditions under which they do so, which can guide subsequent in-depth numerical analyses.
Submission history
From: Jinsu Kim [view email][v1] Wed, 24 Nov 2021 13:06:09 UTC (788 KB)
[v2] Fri, 4 Mar 2022 15:10:10 UTC (789 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.