Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 25 Nov 2021 (v1), last revised 19 Jan 2023 (this version, v2)]
Title:Warm Dark Matter Constraints Using Milky-Way Satellite Observations and Subhalo Evolution Modeling
View PDFAbstract:Warm dark matter (WDM) can potentially explain small-scale observations that currently challenge the cold dark matter (CDM) model, as warm particles suppress structure formation due to free-streaming effects. Observing small-scale matter distribution provides a valuable way to distinguish between CDM and WDM. In this work, we use observations from the Dark Energy Survey and PanSTARRS1, which observe 270 Milky-Way satellites after completeness corrections. We test WDM models by comparing the number of satellites in the Milky Way with predictions derived from the Semi-Analytical SubHalo Inference ModelIng (SASHIMI) code, which we develop based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. We robustly rule out WDM with masses lighter than 4.4 keV at 95% confidence level for the Milky-Way halo mass of $10^{12} M_\odot$. The limits are a weak function of the (yet uncertain) Milky-Way halo mass, and vary as $m_{\rm WDM}>3.6$-$5.1$ keV for $(0.6$-$2.0) \times 10^{12} M_\odot$. For the sterile neutrinos that form a subclass of WDM, we obtain the constraints of $m_{\nu_s}>11.6$ keV for the Milky-Way halo mass of $10^{12} M_{\odot}$. These results based on SASHIMI do not rely on any assumptions of galaxy formation physics or are not limited by numerical resolution. The models, therefore, offer a robust and fast way to constrain the WDM models. By applying a satellite forming condition, however, we can rule out the WDM mass lighter than 9.0 keV for the Milky-Way halo mass of $10^{12} M_\odot$.
Submission history
From: Ariane Dekker [view email][v1] Thu, 25 Nov 2021 15:49:40 UTC (276 KB)
[v2] Thu, 19 Jan 2023 21:40:55 UTC (264 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.