Electrical Engineering and Systems Science > Systems and Control
[Submitted on 25 Nov 2021]
Title:Model Reduction of Linear Dynamical Systems via Balancing for Bayesian Inference
View PDFAbstract:We consider the Bayesian approach to the linear Gaussian inference problem of inferring the initial condition of a linear dynamical system from noisy output measurements taken after the initial time. In practical applications, the large dimension of the dynamical system state poses a computational obstacle to computing the exact posterior distribution. Model reduction offers a variety of computational tools that seek to reduce this computational burden. In particular, balanced truncation is a system-theoretic approach to model reduction which obtains an efficient reduced-dimension dynamical system by projecting the system operators onto state directions which trade off the reachability and observability of state directions as expressed through the associated Gramians. We introduce Gramian definitions relevant to the inference setting and propose a balanced truncation approach based on these inference Gramians that yield a reduced dynamical system that can be used to cheaply approximate the posterior mean and covariance. Our definitions exploit natural connections between (i) the reachability Gramian and the prior covariance and (ii) the observability Gramian and the Fisher information. The resulting reduced model then inherits stability properties and error bounds from system theoretic considerations, and in some settings yields an optimal posterior covariance approximation. Numerical demonstrations on two benchmark problems in model reduction show that our method can yield near-optimal posterior covariance approximations with order-of-magnitude state dimension reduction.
Submission history
From: Christopher Beattie [view email][v1] Thu, 25 Nov 2021 20:45:55 UTC (459 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.