High Energy Physics - Theory
[Submitted on 26 Nov 2021 (v1), last revised 14 Mar 2022 (this version, v2)]
Title:Damping of Pseudo-Goldstone Fields
View PDFAbstract:Approximate symmetries abound in Nature. If these symmetries are also spontaneously broken, the would-be Goldstone modes acquire a small mass, or inverse correlation length, and are referred to as pseudo-Goldstones. At nonzero temperature, the effects of dissipation can be captured by hydrodynamics at sufficiently long scales compared to the local equilibrium. Here we show that in the limit of weak explicit breaking, locality of hydrodynamics implies that the damping of pseudo-Goldstones is completely determined by their mass and diffusive transport coefficients. We present many applications: superfluids, QCD in the chiral limit, Wigner crystal and density wave phases in the presence of an external magnetic field or not, nematic phases and (anti-)ferromagnets. For electronic density wave phases, pseudo-Goldstone damping generates a contribution to the resistivity independent of the strength of disorder, which can have a linear temperature dependence provided the associated diffusivity saturates a bound. This is reminiscent of the phenomenology of strange metal high $T_c$ superconductors, where charge density waves are observed across the phase diagram.
Submission history
From: Vaios Ziogas [view email][v1] Fri, 26 Nov 2021 12:19:28 UTC (40 KB)
[v2] Mon, 14 Mar 2022 18:45:42 UTC (42 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.