Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Nov 2021 (v1), last revised 6 Jun 2022 (this version, v2)]
Title:Direct Detection Constraints on Blazar-Boosted Dark Matter
View PDFAbstract:We explore the possibility that relativistic protons in the extremely powerful jets of blazars may boost via elastic collisions the dark matter particles in the surroundings of the source to high energies. We concentrate on two sample blazars, TXS 0506+056 - towards which IceCube recently reported evidence for a high-energy neutrino flux - and BL Lacertae, a representative nearby blazar. We find that the dark matter flux at Earth induced by these sources may be sizable, larger than the flux associated with the analogous process of dark matter boosted by galactic cosmic rays, and relevant to access direct detection for dark matter particle masses lighter than 1 GeV. From the null detection of a signal by XENON1T, MiniBooNE, and Borexino, we derive limits on dark matter-nucleus spin-independent and spin-dependent cross sections which, depending on the modelization of the source, improve on other currently available bounds for light dark matter candidates of 1 up to 5 orders of magnitude.
Submission history
From: Alessandro Granelli [view email][v1] Fri, 26 Nov 2021 18:17:50 UTC (144 KB)
[v2] Mon, 6 Jun 2022 11:13:11 UTC (182 KB)
Current browse context:
astro-ph.HE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.