Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 27 Nov 2021]
Title:Learning A 3D-CNN and Transformer Prior for Hyperspectral Image Super-Resolution
View PDFAbstract:To solve the ill-posed problem of hyperspectral image super-resolution (HSISR), an usually method is to use the prior information of the hyperspectral images (HSIs) as a regularization term to constrain the objective function. Model-based methods using hand-crafted priors cannot fully characterize the properties of HSIs. Learning-based methods usually use a convolutional neural network (CNN) to learn the implicit priors of HSIs. However, the learning ability of CNN is limited, it only considers the spatial characteristics of the HSIs and ignores the spectral characteristics, and convolution is not effective for long-range dependency modeling. There is still a lot of room for improvement. In this paper, we propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs. Specifically, we first use the proximal gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes. The self-attention layer of Transformer makes it have the ability of spatial global interaction. In addition, we add 3D-CNN behind the Transformer layers to better explore the spatio-spectral correlation of HSIs. Both quantitative and visual results on two widely used HSI datasets and the real-world dataset demonstrate that the proposed method achieves a considerable gain compared to all the mainstream algorithms including the most competitive conventional methods and the recently proposed deep learning-based methods.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.