High Energy Physics - Theory
[Submitted on 28 Nov 2021 (v1), last revised 5 Dec 2021 (this version, v2)]
Title:Momentum relaxation of holographic Weyl semimetal from massive gravity
View PDFAbstract:We consider the effects of momentum relaxation on the topological quantum phase transitions in holographic Weyl semimetals. The translational symmetry breaking in the field theory is realized in the framework of massive gravity. We find that the critical value of the phase transition, characterized by the anomalous Hall conductivity, decreases with the increasing of graviton mass, i.e. the momentum relaxation strength. There exists a critical value of graviton mass above which the topological phase transition disappears and therefore the Weyl points are destroyed. All these phenomena are qualitatively similar to that of axion fields induced momentum relaxation, indicating that a universal feature emerges in the momentum relaxed holographic Weyl semimetals, which is also consistent with the predictions from weakly coupled field theory.
Submission history
From: Junkun Zhao [view email][v1] Sun, 28 Nov 2021 07:29:23 UTC (232 KB)
[v2] Sun, 5 Dec 2021 17:01:43 UTC (232 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.