General Relativity and Quantum Cosmology
[Submitted on 29 Nov 2021 (v1), last revised 4 Dec 2022 (this version, v3)]
Title:Charging up Boosted Black Holes
View PDFAbstract:Contrary to a prevailing assumption that black holes would swiftly discharge, we argue that black holes can charge preferentially when boosted through an ambient magnetic field. Though the details are very different, the preference for charge is related to the precipitation of the Wald charge on a spinning black hole in an ambient magnetic field. The gravito-electrodynamics upstage naive arguments about screening electric fields in determining the value of the charge accrued. Charged test particles, which build up the black hole charge, exhibit chaotic behavior as evidenced by fractal basin boundaries between dynamical regions. Charged, boosted black holes will generate their own electromagnetic fields and thereby their own luminous signatures, even if they are initially bare. We therefore add boosted black holes to the growing list of potentially observable black hole signatures, alongside black hole batteries and black hole pulsars. The implications should be relevant for supermassive black holes that are boosted relative to a galactic magnetic field as well as black holes merging with magnetized neutron stars.
Submission history
From: Roman Berens [view email][v1] Mon, 29 Nov 2021 23:53:55 UTC (1,395 KB)
[v2] Tue, 7 Dec 2021 07:13:29 UTC (1,395 KB)
[v3] Sun, 4 Dec 2022 07:39:42 UTC (3,881 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.