High Energy Physics - Theory
[Submitted on 30 Nov 2021 (v1), last revised 21 Apr 2022 (this version, v2)]
Title:Holographic topological defects in a ring: role of diverse boundary conditions
View PDFAbstract:We investigate the formation of topological defects in the course of a dynamical phase transition with different boundary conditions in a ring from AdS/CFT correspondence. According to the Kibble-Zurek mechanism, quenching the system across the critical point to symmetry-breaking phase will result in topological defects -- winding numbers -- in a compact ring. By setting two different boundary conditions, i.e., Dirichlet and Neumann boundary conditions for the spatial component of the gauge fields in the AdS boundary, we achieve the holographic superfluid and holographic superconductor models, respectively. In the final equilibrium state, different configurations of the order parameter phases for these two models indicate a persistent superflow in the holographic superfluid, however, the holographic superconductor lacks this superflow due to the existence of local gauge fields. The two-point correlation functions of the order parameter also behave differently. In particular, for holographic superfluid the correlation function is a cosine function depending on the winding number. The correlation function for the holographic superconductor, however, decays rapidly at short distances and vanishes at long distance, due to the random localities of the gauge fields. These results are consistent with our theoretical analysis.
Submission history
From: Hai-Qing Zhang [view email][v1] Tue, 30 Nov 2021 09:26:56 UTC (1,178 KB)
[v2] Thu, 21 Apr 2022 13:03:59 UTC (1,197 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.