Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 9 Dec 2021 (v1), last revised 29 Sep 2022 (this version, v2)]
Title:DiffuseMorph: Unsupervised Deformable Image Registration Using Diffusion Model
View PDFAbstract:Deformable image registration is one of the fundamental tasks in medical imaging. Classical registration algorithms usually require a high computational cost for iterative optimizations. Although deep-learning-based methods have been developed for fast image registration, it is still challenging to obtain realistic continuous deformations from a moving image to a fixed image with less topological folding problem. To address this, here we present a novel diffusion-model-based image registration method, called DiffuseMorph. DiffuseMorph not only generates synthetic deformed images through reverse diffusion but also allows image registration by deformation fields. Specifically, the deformation fields are generated by the conditional score function of the deformation between the moving and fixed images, so that the registration can be performed from continuous deformation by simply scaling the latent feature of the score. Experimental results on 2D facial and 3D medical image registration tasks demonstrate that our method provides flexible deformations with topology preservation capability.
Submission history
From: Jong Chul Ye [view email][v1] Thu, 9 Dec 2021 08:41:23 UTC (5,744 KB)
[v2] Thu, 29 Sep 2022 06:38:23 UTC (9,078 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.