Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 Dec 2021 (v1), last revised 15 May 2022 (this version, v2)]
Title:Open-Access Data and Toolbox for Tracking COVID-19 Impact on Power Systems
View PDFAbstract:Intervention policies against COVID-19 have caused large-scale disruptions globally, and led to a series of pattern changes in the power system operation. Analyzing these pandemic-induced patterns is imperative to identify the potential risks and impacts of this extreme event. With this purpose, we developed an open-access data hub (COVID-EMDA+), an open-source toolbox (CoVEMDA), and a few evaluation methods to explore what the U.S. power systems are experiencing during COVID-19. These resources could be broadly used for research, public policy, and educational purposes. Technically, our data hub harmonizes a variety of raw data such as generation mix, demand profiles, electricity price, weather observations, mobility, confirmed cases and deaths. Typical methods are reformulated and standardized in our toolbox, including baseline estimation, regression analysis, and scientific visualization. Here the fluctuation index and probabilistic baseline are proposed for the first time to consider data fluctuation and estimation uncertainty. Based on these, we conduct three empirical studies on the U.S. power systems, and share new solutions and unexpected findings to address the issues of public concerns. This conveys a more complete picture of the pandemic's impacts, and also opens up several attractive topics for future work. Python, Matlab source codes, and user manuals are all publicly shared on a Github repository.
Submission history
From: Guangchun Ruan [view email][v1] Fri, 10 Dec 2021 03:48:50 UTC (1,133 KB)
[v2] Sun, 15 May 2022 18:06:16 UTC (2,270 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.