Electrical Engineering and Systems Science > Systems and Control
[Submitted on 11 Dec 2021 (v1), last revised 4 Oct 2024 (this version, v5)]
Title:Parallelized Robust Distributed Model Predictive Control in the Presence of Coupled State Constraints
View PDF HTML (experimental)Abstract:In this paper, we present a robust distributed model predictive control (DMPC) scheme for dynamically decoupled nonlinear systems which are subject to state constraints, coupled state constraints and input constraints. In the proposed control scheme, all subsystems solve their local optimization problem in parallel and neighbor-to-neighbor communication suffices. The approach relies on consistency constraints which define a neighborhood around each subsystem's reference trajectory where the state of the subsystem is guaranteed to stay in. Reference trajectories and consistency constraints are known to neighboring subsystems. Contrary to other relevant approaches, the reference trajectories are improved consecutively. The presented approach allows the formulation of convex optimization problems for systems with linear dynamics even in the presence of non-convex state constraints. Additionally, we employ tubes in order to ensure the controller's robustness against bounded uncertainties. In the end, we briefly comment on an iterative extension of the DMPC scheme. The effectiveness of the proposed DMPC scheme and its iterative extension are demonstrated with simulations.
Submission history
From: Adrian Wiltz [view email][v1] Sat, 11 Dec 2021 12:19:10 UTC (2,610 KB)
[v2] Mon, 6 Jun 2022 11:17:38 UTC (1,168 KB)
[v3] Mon, 20 Feb 2023 12:58:55 UTC (1,239 KB)
[v4] Fri, 16 Aug 2024 15:04:02 UTC (200 KB)
[v5] Fri, 4 Oct 2024 08:28:14 UTC (575 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.