Electrical Engineering and Systems Science > Systems and Control
[Submitted on 10 Jan 2022]
Title:Data-driven Meets Geometric Control: Zero Dynamics, Subspace Stabilization, and Malicious Attacks
View PDFAbstract:Studying structural properties of linear dynamical systems through invariant subspaces is one of the key contributions of the geometric approach to system theory. In general, a model of the dynamics is required in order to compute the invariant subspaces of interest. In this paper we overcome this limitation by finding data-driven formulas for some of the foundational tools of geometric control. In particular, for an unknown linear system, we show how controlled and conditioned invariant subspaces can be found directly from experimental data. We use our formulas and approach to (i) find a feedback gain that confines the system state within a desired subspace, (ii) compute the invariant zeros of the unknown system, and (iii) design attacks that remain undetectable.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.