Mathematics > Numerical Analysis
[Submitted on 16 Jan 2022]
Title:Unconditionally optimal error estimate of a linearized variable-time-step BDF2 scheme for nonlinear parabolic equations
View PDFAbstract:In this paper we consider a linearized variable-time-step two-step backward differentiation formula (BDF2) scheme for solving nonlinear parabolic equations. The scheme is constructed by using the variable time-step BDF2 for the linear term and a Newton linearized method for the nonlinear term in time combining with a Galerkin finite element method (FEM) in space. We prove the unconditionally optimal error estimate of the proposed scheme under mild restrictions on the ratio of adjacent time-steps, i.e. $0<r_k < r_{\max} \approx 4.8645$ and on the maximum time step. The proof involves the discrete orthogonal convolution (DOC) and discrete complementary convolution (DCC) kernels, and the error splitting approach. In addition, our analysis also shows that the first level solution $u^1$ obtained by BDF1 (i.e. backward Euler scheme) does not cause the loss of global accuracy of second order. Numerical examples are provided to demonstrate our theoretical results.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.