Computer Science > Information Theory
[Submitted on 16 Jan 2022]
Title:Explicit and Efficient Constructions of linear Codes Against Adversarial Insertions and Deletions
View PDFAbstract:In this work, we study linear error-correcting codes against adversarial insertion-deletion (insdel) errors, a topic that has recently gained a lot of attention. We construct linear codes over $\mathbb{F}_q$, for $q=\text{poly}(1/\varepsilon)$, that can efficiently decode from a $\delta$ fraction of insdel errors and have rate $(1-4\delta)/8-\varepsilon$. We also show that by allowing codes over $\mathbb{F}_{q^2}$ that are linear over $\mathbb{F}_q$, we can improve the rate to $(1-\delta)/4-\varepsilon$ while not sacrificing efficiency. Using this latter result, we construct fully linear codes over $\mathbb{F}_2$ that can efficiently correct up to $\delta < 1/54$ fraction of deletions and have rate $R = (1-54\cdot \delta)/1216$. Cheng, Guruswami, Haeupler, and Li [CGHL21] constructed codes with (extremely small) rates bounded away from zero that can correct up to a $\delta < 1/400$ fraction of insdel errors. They also posed the problem of constructing linear codes that get close to the half-Singleton bound (proved in [CGHL21]) over small fields. Thus, our results significantly improve their construction and get much closer to the bound.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.