Mathematics > Analysis of PDEs
[Submitted on 16 Jan 2022]
Title:A non-parametric Plateau problem with partial free boundary
View PDFAbstract:We consider a Plateau problem in codimension $1$ in the non-parametric setting. A Dirichlet boundary datum is given only on part of the boundary $\partial \Omega$ of a bounded convex domain $\Omega\subset\mathbb{R}^2$. Where the Dirichlet datum is not prescribed, we allow a free contact with the horizontal plane. We show existence of a solution, and prove regularity for the corresponding minimal surface. Finally we compare these solutions with the classical minimal surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary datum is assigned in at most $2$ disjoint arcs of $\partial \Omega$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.