Mathematics > Algebraic Geometry
[Submitted on 17 Jan 2022]
Title:On the two-dimensional Jacobian conjecture: Magnus' formula revisited, I
View PDFAbstract:Let $K$ be an algebraically closed field of characteristic 0. When the Jacobian $({\partial f}/{\partial x})({\partial g}/{\partial y}) - ({\partial g}/{\partial x})({\partial f}/{\partial y})$ is a constant for $f,g\in K[x,y]$, Magnus' formula from [A. Magnus, Volume preserving transformations in several complex variables, Proc. Amer. Math. Soc. 5 (1954), 256--266] describes the relations between the homogeneous degree pieces $f_i$'s and $g_i$'s. We show a more general version of Magnus' formula and prove a special case of the two-dimensional Jacobian conjecture as its application.
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.