Mathematics > Algebraic Geometry
[Submitted on 18 Jan 2022 (v1), last revised 24 Jun 2024 (this version, v2)]
Title:Logarithmic moduli of roots of line bundles on curves
View PDFAbstract:We use the theory of logarithmic line bundles to construct compactifications of spaces of roots of a line bundle on a family of curves, generalising work of a number of authors. This runs via a study of the torsion in the tropical and logarithmic jacobians (recently constructed by Molcho and Wise). Our moduli space carries a `double ramification cycle' measuring the locus where the given root is isomorphic to the trivial bundle, and we give a tautological formula for this class in the language of piecewise polynomial functions (as recently developed by Molcho-Pandharipande-Schmitt and Holmes-Schwarz).
Submission history
From: David Holmes [view email][v1] Tue, 18 Jan 2022 10:53:53 UTC (37 KB)
[v2] Mon, 24 Jun 2024 08:27:34 UTC (38 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.