Mathematics > Algebraic Geometry
[Submitted on 20 Jan 2022]
Title:Hypergeometric sheaves for classical groups via geometric Langlands
View PDFAbstract:In a previous paper, the first and third authors gave an explicit realization of the geometric Langlands correspondence for hypergeometric sheaves, considered as $\textrm{GL}_n$-local systems. Certain hypergeometric local systems admit a symplectic or orthogonal structure, which can be viewed as $\check{G}$-local systems, for a classical group $\check{G}$. This article aims to realize the geometric Langlands correspondence for these $\check{G}$-local systems. We study this problem from two aspects. In the first approach, we define the hypergeometric automorphic data for a classical group $G$ in the framework of Yun, one of whose local components is a new class of euphotic representations in the sense of Jakob-Yun. We prove the rigidity of hypergeometric automorphic data under natural assumptions, which allows us to define $\check{G}$-local systems $\mathcal{E}_{\check{G}}$ on $\mathbb{G}_m$ as Hecke eigenvalues (in both $\ell$-adic and de Rham setting). In the second approach (which works only in the de Rham setting), we quantize an enhanced ramified Hitchin system, following Beilinson-Drinfeld and Zhu, and identify $\mathcal{E}_{\check{G}}$ with certain $\check{G}$-opers on $\mathbb{G}_m$. Finally, we compare these $\check{G}$-opers with hypergeometric local systems.
Current browse context:
math.AG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.