Computer Science > Machine Learning
[Submitted on 31 Jan 2022 (v1), last revised 24 May 2022 (this version, v2)]
Title:On the identifiability of mixtures of ranking models
View PDFAbstract:Mixtures of ranking models are standard tools for ranking problems. However, even the fundamental question of parameter identifiability is not fully understood: the identifiability of a mixture model with two Bradley-Terry-Luce (BTL) components has remained open. In this work, we show that popular mixtures of ranking models with two components (BTL, multinomial logistic models with slates of size 3, or Plackett-Luce) are generically identifiable, i.e., the ground-truth parameters can be identified except when they are from a pathological subset of measure zero. We provide a framework for verifying the number of solutions in a general family of polynomial systems using algebraic geometry, and apply it to these mixtures of ranking models to establish generic identifiability. The framework can be applied more broadly to other learning models and may be of independent interest.
Submission history
From: Xucheng Zhang [view email][v1] Mon, 31 Jan 2022 11:23:31 UTC (48 KB)
[v2] Tue, 24 May 2022 15:16:22 UTC (56 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.